If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-90x-225=0
a = 2; b = -90; c = -225;
Δ = b2-4ac
Δ = -902-4·2·(-225)
Δ = 9900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9900}=\sqrt{900*11}=\sqrt{900}*\sqrt{11}=30\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-30\sqrt{11}}{2*2}=\frac{90-30\sqrt{11}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+30\sqrt{11}}{2*2}=\frac{90+30\sqrt{11}}{4} $
| 1/2(4x+6)=8x | | 45h+100=347.50 | | |20+3x|=5x+4 | | 3y+9+7y+2=91 | | 7x-4=7(x-1)+10 | | −x=6−3x+8 | | 6d+2-3d=3d-2 | | −2x−10+4x=3x+3 | | (x+5)+(3x)=360 | | 5(3k+2)+4k=14k | | 2x-3=27-3x | | 2x-2=3x-10 | | (x+5)+(3x)=180 | | x=0.6(x+4) | | 55+y=72 | | 2x-6=29-3x | | 4(2l+6)=64 | | −2(x+5)+4x=3(x+1) | | x^2-10x-47=0 | | x2-x=2 | | 0.2×20+1×x=0.25(20+x) | | w2+3=20 | | 2+7=x-8 | | 2−(−3a−8)=1 | | w2+3=3 | | 2y+54=11y | | 2x-14=2x- | | (4-a)(a-3)(a-4)=0 | | (3x-7)+(2x+3)=90 | | 4.25x+7=53.75 | | 2(3x+7)=-4+8 | | 3y-2/5=1/2 |